The EMF Biological Research Trust

[ About Us | Publications ]

Publications by sponsored groups


Upper bound on the biological effects of 50/60 Hz magnetic fields mediated by radical pairs. Hore PJ. Elife 2019; 8:e44179.


Proposal to use superparamagnetic nanoparticles to test the role of cryptochrome in magnetoreception. Worster SB, Hore PJ. J R Soc Interface 2018; 15:20180587.

Differential roles for cryptochromes in the mammalian retinal clock. Wong JCY, Smyllie NJ, Banks GT, Pothecary CA, Barnard AR, Maywood ES, Jagannath A, Hughes S, van der Horst GTJ, MacLaren RE, Hankins MW, Hastings MH, Nolan PM, Foster RG, Peirson SN. FASEB J 2018; 21:fj201701165RR. [published online 21 March 2018].


The sensitivity of a radical pair compass magnetoreceptor can be significantly amplified by radical scavengers. Kattnig DR, Hore PJ. Sci Rep 2017; 7:11640.

Vertebrate cryptochromes are vestigial flavoproteins. Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Scrutton NS. Sci Rep 2017; 7:44906.

Millitesla magnetic field effects on the photocycle of an animal cryptochrome. Sheppard DM, Li J, Henbest KB, Neil SR, Maeda K, Storey J, Schleicher E, Biskup T, Rodriguez R, Weber S, Hore PJ, Timmel CR, Mackenzie SR. Sci Rep 2017; 7:42228.


Magnetic fields modulate blue-light-dependent regulation of neuronal firing by cryptochrome. Giachello CN, Scrutton NS, Jones AR, Baines RA. J Neurosci 2016; 36:10742-9.

Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals. Evans EW, Kattnig DR, Henbest KB, Hore PJ, Mackenzie SR, Timmel CR. J Chem Phys 2016; 145:085101. [published online 24 August 2016].

The radical pair mechanism of magnetoreception. Hore PJ and Mouritsen H. Annu Rev Biophys 2016; 45:299-344. [published online 16 May 2016].

The quantum needle of the avian magnetic compass. Hiscock HG, Worster S, Kattnig DR, Steers C, Jin Y, Manolopoulos DE, Mouritsen H, Hore PJ. Proc Natl Acad Sci U S A 2016; 113:4634-9. [published online 4 April 2016].

Electron spin relaxation in cryptochrome-based magnetoreception. Kattnig DR, Solov'yov IA, Hore PJ. Phys Chem Chem Phys 2016; 18:12443-56. [published online 16 March 2016].

A further investigation of the effects of extremely low frequency magnetic fields on alkaline phosphatase and acetylcholinesterase. Silkstone G, Wilson MT. PLoS One 2016; 11:e0148369.

Rhythmic expression of cryptochrome induces the circadian clock of arrhythmic suprachiasmatic nuclei through arginine vasopressin signaling. Edwards MD, Brancaccio M, Chesham JE, Maywood ES, Hastings MH. Proc Natl Acad Sci U S A 2016; 113:2732-7. [published online 22 February 2016].

Magnetic field effects in proteins. Jones AR. Mol Phys 2016; 114:1691-702. [published online 18 February 2016].

Mutation induction in the mouse and human germline. Dubrova YE. Russ J Genet 2016; 52:17-28. [published online 2 February 2016].

Chemical amplification of magnetic field effects relevant to avian magnetoreception. Kattnig DR, Evans EW, Dejean V, Dodson CA, Wallace MI, Mackenzie SR, Timmel CR, Hore PJ. Nat Chem 2016; 8:384-91. [published online 1 February 2016].


Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen. van Wilderen LJ, Silkstone G, Mason M, van Thor JJ, Wilson MT. FEBS Open Bio 2015; 5:885-92.

The photochemical mechanism of a B12-dependent photoreceptor protein. Kutta RJ, Hardman SJ, Johannissen LO, Bellina B, Messiha HL, Ortiz-Guerrero JM, Elias-Arnanz M, Padmanabhan S, Barran P, Scrutton NS, Jones AR. Nat Commun 2015; 6:7907.

Sensitive fluorescence-based detection of magnetic field effects in photoreactions of flavins. Evans EW, Li J, Storey JG, Maeda K, Henbest KB, Dodson CA, Hore PJ, Mackenzie SR, Timmel CR. Phys Chem Chem Phys 2015; 17:18456-63. [published online 25 June 2015].

Fluorescence-detected magnetic field effects on radical pair reactions from femtolitre volumes. Dodson CA, Wedge CJ, Murakami M, Maeda K, Wallace MI, Hore PJ. Chem Commun (Camb) 2015; 51:8023-6. [published online 25 March 2015].

The rate of X-ray induced DNA double strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields. Woodbine L, Haines J, Coster M, Barazzuol L, Ainsbury E, Sienkiewicz Z, Jeggo P. Int J Radiat Biol 2015; 91:495-9. [published online 19 March 2015].

The effects of extremely low frequency magnetic fields on mutation induction in mice. Wilson JW, Haines J, Sienkiewicz Z, Dubrova YE. Mutat Res 2015; 773:22-6.

Probing a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance. Maeda K, Storey JG, Liddell PA, Gust D, Hore PJ, Wedge CJ, Timmel CR. Phys Chem Chem Phys 2015; 17:3550-9. [published online 24 December 2014].

Magnetic field effects as a result of the radical pair mechanism are unlikely in redox enzymes. Messiha HL, Wongnate T, Chaiyen P, Jones AR, Scrutton NS. J R Soc Interface 2015; 12:20141155. [published online 10 December 2014].


Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. Fedele G, Edwards MD, Bhutani S, Hares JM, Murbach M, Green EW, Dissel S, Hastings MH, Rosato E, Kyriacou CP. PLoS Genet 2014; 10:e1004804.

Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae. Marley R, Giachello CN, Scrutton NS, Baines RA, Jones AR. Sci Rep 2014; 4:5799.

Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields. Saha S, Woodbine L, Haines J, Coster M, Ricket N, Barazzuol L, Ainsbury E, Sienkiewicz Z, Jeggo P. J R Soc Interface 2014; 11:20140783.

An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Fedele G, Green EW, Rosato E, Kyriacou CP. Nat Commun 2014; 5:4391-6.

Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Engels S, Schneider NL, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H. Nature 2014; 509:353-6.

Alternative radical pairs for cryptochrome-based magnetoreception. Lee AA, Lau JC, Hogben HJ, Biskup T, Kattnig DR, Hore PJ. J R Soc Interface 2014; 11:20131063.

Broadband cavity-enhanced detection of magnetic field effects in chemical models of a cryptochrome magnetoreceptor. Neil SR, Li J, Sheppard DM, Storey J, Maeda K, Henbest KB, Hore PJ, Timmel CR, Mackenzie SR. J Phys Chem B 2014; 118:4177-84.

A Drosophila RNAi collection is subject to dominant phenotypic effects. Green EW, Fedele G, Giorgini F, Kyriacou CP. Nat Methods 2014; 11:222-3.

A chemical compass for bird navigation. Solov'yov IA, Ritz T, Schulten K, Hore PJ. In: Mohseni M, Omar Y, Engel G, Plenio M, editors. Quantum Effects in Biology, chapter 10, pp.218-236. Cambridge: Cambridge University Press, 2014.


Investigation of transcriptional responses of juvenile mouse bone marrow to power frequency magnetic fields. Kabacik S, Kirschenlohr H, Raffy C, Whitehill K, Coster M, Abe M, Brindle K, Badie C, Sienkiewicz Z, Bouffler S. Mutat Res 2013; 745-746:40-5.

A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception. Dodson CA, Hore PJ, Wallace MI. Trends Biochem Sci 2013; 38:435-46.

Spin-locking in low-frequency reaction yield detected magnetic resonance. Wedge CJ, Lau JC, Ferguson KA, Norman SA, Hore PJ, Timmel CR. Phys Chem Chem Phys 2013; 15:16043-53.

Relating localized protein motions to the reaction coordinate in coenzyme B12-dependent enzymes. Jones AR, Levy C, Hay S, Scrutton NS. FEBS J 2013; 280:2997-3008.

Spin-selective recombination reactions of radical pairs: Experimental test of validity of reaction operators. Maeda K, Liddell P, Gust D, Hore PJ. J Chem Phys 2013; 139:234309.

Magnetic field effects in flavoproteins and related systems. Evans EW, Dodson CA, Maeda K, Biskup T, Wedge CJ, Timmel CR. Interface Focus 2013; 3:20130037.

Updated structure of Drosophila cryptochrome. Levy C, Zoltowski BD, Jones AR, Vaidya AT, Top D, Widom J, Young MW, Scrutton NS, Crane BR, Leys D. Nature 2013; 495:E3-E4.


Gene expression profiles in white blood cells of volunteers exposed to a 50 Hz electromagnetic field. Kirschenlohr H, Ellis P, Hesketh R, Metcalfe J. Radiat Res 2012; 178:138-49.

Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes. Lau JC, Rodgers CT, Hore PJ. J R Soc Interface 2012; 9:3329-37.

The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Mouritsen H, Hore PJ. Curr Opin Neurobiol 2012; 22:343-52.

Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ. Proc Natl Acad Sci U S A 2012; 109:4774-9.

Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability. Vieira J, Jones AR, Danon A, Sakuma M, Hoang N, Robles D, Tait S, Heyes DJ, Picot M, Yoshii T, Helfrich-Förster C, Soubigou G, Coppee JY, Klarsfeld A, Rouyer F, Scrutton NS, Ahmad M. PLoS One 2012; 7:e31867.

Reexamination of magnetic isotope and field effects on adenosine triphosphate production by creatine kinase. Crotty D, Silkstone G, Poddar S, Ranson R, Prina-Mello A, Wilson MT, Coey JM. Proc Natl Acad Sci U S A 2012; 109:1437-42.

Are biochemical reactions affected by weak magnetic fields? Hore P. Proc Natl Acad Sci U S A 2012; 109:1357-8.


Is there a dynamic protein contribution to the substrate trigger in coenzyme B12-dependent ethanolamine ammonia lyase? Jones AR, Hardman SJ, Hay S, Scrutton NS. Angew Chem Int Ed Engl 2011; 50:10843-6.

Spin-selective recombination kinetics of a model chemical magnetoreceptor. Maeda K, Wedge CJ, Storey JG, Henbest KB, Liddell PA, Kodis G, Gust D, Hore PJ, Timmel CR. Chem Commun (Camb) 2011; 47:6563-5.

Following radical pair reactions in solution: a step change in sensitivity using cavity ring-down detection. Maeda K, Neil SR, Henbest KB, Weber S, Schleicher E, Hore PJ, Mackenzie SR, Timmel CR. J Am Chem Soc 2011; 133:17807-15.

Reaction operators for spin-selective chemical reactions of radical pairs. Jones JA, Maeda K, Hore PJ. Chem Phys Lett 2011; 507:269-73.


Effects of disorder and motion in a radical pair magnetoreceptor. Lau JC, Wagner-Rundell N, Rodgers CT, Green NJ, Hore PJ. J R Soc Interface 2010; 7(Suppl 2):S257-64.

Consistent treatment of spin-selective recombination of a radical pair confirms the Haberkorn approach. Ivanov KL, Petrova MV, Lukzen NN, Maeda K. J Phys Chem A 2010; 114:9447-55.

Protein surface interactions probed by magnetic field effects on chemical reactions. Maeda K, Robinson AJ, Henbest KB, Dell EJ, Timmel CR. J Am Chem Soc 2010; 132:1466-7.

Cavity enhanced detection methods for probing the dynamics of spin correlated radical pairs in solution. Neil SRT, Maeda K, Henbest KB, Goez M, Hemmens R, Timmel CR, Mackenzie SR. Mol Phys 2010; 108:993-1003.


Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy. Hogben HJ, Efimova O, Wagner-Rundell N, Timmel CR, Hore PJ. Chem Phys Lett 2009; 480:118-22.

Radiofrequency polarization effects in low-field electron paramagnetic resonance. Wedge CJ, Rodgers CT, Norman SA, Baker N, Maeda K, Henbest KB, Timmel CR, Hore PJ. Phys Chem Chem Phys 2009; 11:6573-9.

Radiofrequency polarization effects in zero-field electron paramagnetic resonance. Rodgers CT, Wedge CJ, Norman SA, Kukura P, Nelson K, Baker N, Maeda K, Henbest KB, Hore PJ, Timmel CR. Phys Chem Chem Phys 2009; 11:6569-72.

Chemical magnetoreception in birds: the radical pair mechanism. Rodgers CT, Hore PJ. Proc Natl Acad Sci U S A 2009; 106:353-60.

Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. Harris SR, Henbest KB, Maeda K, Pannell JR, Timmel CR, Hore PJ, Okamoto H. J R Soc Interface 2009; 6:1193-205.

Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Timmel CR, Wiltschko W. Biophys J 2009; 96:3451-7.

DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields. Burdak-Rothkamm S, Rothkamm K, Folkard M, Patel G, Hone P, Lloyd D, Ainsbury L, Prise KM. Mutat Res 2009; 672:82-9.

Continuous wave photolysis magnetic field effect investigations with free and protein-bound alkylcobalamins. Jones AR, Woodward JR, Scrutton NS. J Am Chem Soc 2009; 131:17246-53.


Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase. Henbest KB, Maeda K, Hore PJ, Joshi M, Bacher A, Bittl R, Weber S, Timmel CR, Schleicher E. Proc Natl Acad Sci U S A 2008; 105:14395-9.

Chemical compass model of avian magnetoreception. Maeda K, Henbest KB, Cintolesi F, Kuprov I, Rodgers CT, Liddell PA, Gust D, Timmel CR, Hore PJ. Nature 2008; 453:387-90.

Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. Efimova O, Hore PJ. Biophys J 2008; 94:1565-74.


Determination of radical re-encounter probability distributions from magnetic field effects on reaction yields. Rodgers CT, Norman SA, Henbest KB, Timmel CR, Hore PJ. J Am Chem Soc 2007; 129:6746-55.

Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H. PLoS One 2007; 2:e1106.

Magnetic field effect studies indicate reduced geminate recombination of the radical pair in substrate-bound adenosylcobalamin-dependent ethanolamine ammonia lyase. Jones AR, Hay S, Woodward JR, Scrutton NS. J Am Chem Soc 2007; 129:15718-27.


Measurement of magnetic field effects on radical recombination reactions using triplet-triplet energy transfer. Henbest KB, Maeda K, Athanassiades E, Hore PJ, Timmel CR. Chem Phys Lett 2006; 421:571-6.

Magnetic field effects and radical pair mechanisms in enzymes: a reappraisal of the horseradish peroxidase system. Jones AR, Scrutton NS, Woodward JR. J Am Chem Soc 2006; 128:8408-9.

A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Weeks ME, Sinclair J, Butt A, Chung YL, Worthington JL, Wilkinson CR, Griffiths J, Jones N, Waterfield MD, Timms JF. Proteomics 2006; 6:2772-96.

Proteomic response of Schizosaccharomyces pombe to static and oscillating extremely low-frequency electromagnetic fields. Sinclair J, Weeks M, Butt A, Worthington JL, Akpan A, Jones N, Waterfield M, Allanand D, Timms JF. Proteomics 2006; 6:4755-64.

Chromatid damage in human lymphocytes is not affected by 50 Hz electromagnetic fields. Hone P, Lloyd D, Szluinska M, Edwards A. Radiat Prot Dosimetry 2006; 121:321-4.

Photoionization of TMPD in DMSO solution: mechanism and magnetic field effects. Henbest KB, Athanassiades E, Maeda K, Kuprov I, Hore PJ, Timmel CR. Mol Phys 2006; 104:1789-94.


Magnetic field effect on singlet oxygen production in a biochemical system. Liu Y, Edge R, Henbest K, Timmel CR, Hore PJ, Gast P. Chem Commun (Camb) 2005; 2:174-6.

Stress-induced changes in the Schizosaccharomyces pombe proteome using two-dimensional difference gel electrophoresis, mass spectrometry and a novel integrated robotics platform. Weeks ME, Sinclair J, Jacob RJ, Saxton MJ, Kirby S, Jones J, Waterfield MD, Cramer R, Timms JF. Proteomics 2005; 5:1669-85.

Influence of dipolar interactions on radical pair recombination reactions subject to weak magnetic fields. O'Dea AR, Curtis AF, Green NJ, Timmel CR, Hore PJ. J Phys Chem A 2005; 109:869-73.

Low-field optically detected EPR spectroscopy of transient photoinduced radical pairs. Rodgers CT, Henbest KB, Kukura P, Timmel CR, Hore PJ. J Phys Chem A 2005; 109:5035-41.

SCF(Pof1)-ubiquitin and its target Zip1 transcription factor mediate cadmium response in fission yeast. Harrison C, Katayama S, Dhut S, Chen D, Jones N, Bähler J, Toda T. EMBO J 2005; 24:599-610.


The repair of gamma-ray-induced chromosomal damage in human lymphocytes after exposure to extremely low frequency electromagnetic fields. Lloyd D, Hone P, Edwards A, Cox R, Halls J. Cytogenet Genome Res 2004; 104:188-92.

Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. Henbest KB, Kukura P, Rodgers CT, Hore PJ, Timmel CR. J Am Chem Soc 2004; 126:8102-3.

A study of spin chemistry in weak magnetic fields. Timmel CR, Henbest KB. Philos Trans A Math Phys Eng Sci 2004; 362: 2573-89.

Effect of 50 Hz electromagnetic fields on the induction of heat-shock protein gene expression in human leukocytes. Coulton LA, Harris PA, Barker AT, Pockley AG. Radiat Res 2004; 161:430-4.


Global transcriptional responses of fission yeast to environmental stress. Chen D, Toone WM, Mata J, Lyne R, Burns G, Kivinen K, Brazma A, Jones N, Bähler J. Mol Biol Cell 2003; 14:214-29.

Possible associations between ELF electromagnetic fields, DNA damage response processes and childhood leukaemia. Hone P, Edwards A, Halls J, Cox R, Lloyd D. Br J Cancer 2003; 88:1939-41.

Anisotropic recombination of an immobilized photoinduced radical pair in a 50-µT magnetic field: a model avian photomagnetoreceptor. Cintolesi F, Ritz T, Kay CWM, Timmel CR, Hore PJ. Chem Phys 2003; 294:385-99.


Magnetic fields and radical reactions: recent developments and their role in nature. Brocklehurst B. Chem Soc Rev 2002; 31:301-11.


Model calculations of magnetic field effects on the recombination reactions of radicals with anisotropic hyperfine interactions. Timmel CR, Cintolesi F, Brocklehurst B, Hore PJ. Chem Phys Lett 2001; 334:387-95.


Response of human cells to electromagnetic fields: do effects vary with genetic background? Arrand JE, Adu-Poku A, Fawell SC, Dunn MJ, Gamble SC. In : Moriarty M, Mothersill C, Seymour C, editors. Radiation Research : 11th International Congress of Radiation Research; 1999 July 18-23; Dublin, Ireland. Lawrence (KS): Allen Press; c2000; vol 2 (Proceedings) p.244-7.

The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain. Coulton LA, Barker AT,Van Lierop JE, Walsh MP. Bioelectromagnetics 2000; 21:189-96.

The effects of weak magnetic fields on radical recombination reactions in micelles. Eveson RW, Timmel CR, Brocklehurst B, Hore PJ, McLauchlan KA. Int J Radiat Biol 2000; 76:1509-22.

Changes in neurite outgrowth but not in cell division induced by low EMF exposure: influence of field strength and culture conditions on responses in rat PC12 pheochromocytoma cells. McFarlane EH, Dawe GS, Marks M, Campbell IC. Bioelectrochemistry 2000; 52:23-8.

Lyn and syk tyrosine kinases are not activated in B-lineage lymphoid cells exposed to low-energy electromagnetic fields. Woods M, Bobanovic F, Brown D, Alexander DR. FASEB J 2000; 14:2284-90.

Radiofrequency magnetic field effects on chemical reaction yields. Stass DV, Woodward JR, Timmel CR, Hore PJ, McLauchlan KA. Chem Phys Lett 2000; 329:15-22.


Observations on the effects of low frequency electromagnetic fields on cellular transcription in Drosophila larvae reared in field-free conditions. Tipping DR, Chapman KE, Birley AJ, Anderson M. Bioelectromagnetics 1999; 20:129-31.

Diatom motility: the search for independent replication of biological effects of extremely low-frequency electromagnetic fields. Clarkson N, Davies MS, Dixey R. Int J Radiat Biol 1999; 75:387-92.

Diatom motility and low frequency electromagnetic fields - a new technique in the search for independent replication of results. Clarkson N, Davies MS, Dixey R. Bioelectromagnetics 1999; 20:94-100.

The design, construction and calibration of a carefully controlled source for exposure of mammalian cells to extremely low-frequency electromagnetic fields. Wolff H, Gamble S, Barkley T, Janaway L, Jowett F, Halls JA, Arrand JE. J Radiol Prot 1999; 19:231-42.

Syrian hamster dermal cell immortalization is not enhanced by power line frequency electromagnetic field exposure. Gamble SC, Wolff H, Arrand JE. Br J Cancer 1999; 81:377-80.

Elementary [Ca2+]i signals generated by electroporation functionally mimic those evoked by hormonal stimulation. Bobanovic F, Bootman MD, Berridge MJ, Parkinson NA, Lipp P. FASEB J 1999; 13:365-76.


Biological responses to electromagnetic fields. Lacy-Hulbert A, Metcalfe JC, Hesketh R. FASEB J 1998; 12:395-420.

Chemically induced dynamic electron polarization (CIDEP) in moderately fast-relaxing systems. Eveson RW, McLauchlan KA, Page-Croft E. Mol Phys 1998; 95:107-20.

Effects of weak magnetic fields on free radical recombination reactions. Timmel CR, Till U, Brocklehurst B, McLauchlan KA, Hore PJ. Mol Phys 1998; 95:71-89.

The influence of very small magnetic fields on radical recombination reactions in the limit of slow recombination. Till U, Timmel CR, Brocklehurst B, Hore PJ. Chem Phys Lett 1998; 298:7-14.

Evaluation of the effects of extremely low frequency electromagnetic fields on movement in the marine diatom Amphora coffeaeformis. Davies MS, Dixey R, Green JC. Biol Bull 1998; 194:194-223.

Automatic cell electrorotation measurements: studies of the biological effects of low-frequency magnetic fields and of heat shock. Zhou XF, Burt JP, Pethig R. Phys Med Biol 1998; 43:1075-90.


Magnetic isotope effects in biology: a marker for radical pair reactions and electromagnetic field effects? Brocklehurst B. Int J Radiat Biol 1997; 72:587-96.

Apoptosis in haemopoietic progenitor cells exposed to extremely low-frequency magnetic fields. Reipert BM, Allan D, Reipert S, Dexter TM. Life Sci 1997; 61:1571-82.

Resonant radiofrequency magnetic field effects on a chemical reaction. Woodward JR, Jackson RJ, Timmel CR, Hore PJ, McLauchlan KA. Chem Phys Lett 1997; 272:376-82.


Exposure to extremely low frequency magnetic fields has no effect on growth rate or clonogenic potential of multipotential haemopoietic progenitor cells. Reipert BM, Allan D, Dexter TM. Growth Factors 1996; 13:205-17.

Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Brocklehurst B, McLauchlan KA. Int J Radiat Biol 1996; 69:3-24.


Cancer risk and electromagnetic fields. Lacy-Hulbert A, Wilkins RC, Hesketh TR, Metcalfe JC. Nature 1995; 375:23.

No effect of 60 Hz electromagnetic fields on MYC or β-actin expression in human leukemic cells. Lacy-Hulbert A, Wilkins RC, Hesketh TR, Metcalfe JC. Radiat Res 1995; 44:9-17.


The lack of evidence for ELF magnetic-field effects on bilayer membranes and reconstituted membrane channels. Burt JP, Morgan H, Pethig R. Phys Med Biol 1994; 39:1515-26.

The detection and analysis of multiple-membrane-channel events by convolution. Burt JP, Morgan H, Pethig R. Phys Med Biol 1994; 39:1527-35.

An upper limit for the effect of low frequency magnetic fields on ATP-sensitive potassium channels. Wang KW, Hladky SB. Biochim Biophys Acta 1994; 1195:218-22.

Absence of effects of low-frequency, low-amplitude magnetic fields on the properties of gramicidin A channels. Wang KW, Hladky SB. Biophys J 1994; 67:1473-83.

Other Trust-related publications


Metcalfe JC, Brindle KM. Letter to the editor (Re: Impact of cardiac magnetic resonance imaging on human lymphocyte DNA integrity. Fiechter M, Stehli J, Fuchs TA, Dougoud S, Gaemperli O, Kaufmann PA. Eur Heart J 2013; 34:2340-5).


Stakeholder Advisory Group on ELF EMFs (SAGE), First Interim Assessment: Statement on behalf of the EMF Biological Research Trust. Michael Crumpton,, May 2007.


The Bernal Lecture 2004: Are low-frequency electromagnetic fields a health hazard? Crumpton MJ. Philos Trans R Soc Lond B Biol Sci 2005; 360:1223-30.


Are environmental electromagnetic fields genotoxic? Crumpton MJ, Collins AR. DNA Repair (Amst) 2004; 3:1385-7.


Dissecting the pylon problem. Crumpton M. Science and Public Affairs; Aug 2000; p24-6.


Cancer risk and electromagnetic fields. Saffer JD, Thurston SJ. Nature 1995; 375:22.